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Kharlamov IJ] and Tsodokova p] have specified the cone of permanent axes ot a gyro- 

stat having a single stationary point. The present paper is an investigation of this cone 
and the domain of stability of the permanen; rotations . It is appropriate at this point 

to note that Kharlamov’s remarks in p] concerning the present author’s papers [3] and [4] 
are quite valid. 

Our notation is as follows : OX~X$Q is a coordinate system invariably connected 
with the solid portion of the gyrostat The origin of the system lies at the point 0 of 
t,he gyrostat and its axes coincide with the principal axes of inertia. A 1 , AZ, A3 are 
the principal moments of inertia: 1 is the inertia tensor of the gyrostat for the station- 

ary point 0 r k( kl , kz , k3 ) is the gyrostatic moment : r( rl , r2, r3 ) is the 
radiwector of the center of mass : 61 (pl, p,, ps) is the angular velocity vector of the 

gyrostat : y (yl, ya, ys) is the unit vector of the stationary axis (vertical) directed ver- 
tically upward : e( e 1 , e 2 , e3 ) is the unit vector of the permanent axis ; W is the 

projection of the angular velocity vector on the vertical; P is the weight of the gyrostat. 

1, Invsrtigrtion of the cone of permrncnt axea, Theequations of 
motion of a heavy gyrostat having a stationary point can be written as 

++ox(lo+k)+P(rxy)=O, +‘yxo (W 

when its internal motions are steady, 

If 0.J = const , the permanent axis of rotation is the vertical which passes through the 

stationary point , Then e = y, 0 = oe and from (1.1) we obtain Equation 

(exIe)d+(exk)o+Prxe=O U-2) 
We now introduce the notation (1.3) 

S (et, es, ea) 3 Ie (e X r> = (A,-- Ad ~1fW3 + (Aa- 4hw2+ 
+ (A, - AJ r3w2 

R (e,, et, es) = le (e x k) = (A, - A) be,% i- 6% - AI) be~es i- 
+ (A, - 4) Jwle2 

II (e,, es, es) = e (r x k) = N,e, -I- Nz% -I- LVsem Ni = r.i+lki+Z - ri+2ki+l 

Here and below the subscripts must not exceed 3 , and should be diminished by 3 if 
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they do. 

In the present coordinates e, the cone of permanent axes is described by a spherical 
curve obtained by intersecting a unit sphere with a fourth-order surface, 

Q (e,, e,, es) = P IS (e,, e2, e3)la + R (e,, e2, es) II (e,, ez, 4 = 0 (1.4) 

Each point of this curve, for which the vectors 

a =exle, b=exk, C=PrxC (I 3) 

are nonzero 

vertical and 
and noncolinear, is associated with a semiaxis which 

therefore serves as an axis of permanent rotation with 

is directed along the 

the angular veloeiLy 

For definiteness, let us suppose that 

&<A,<&, r-i>% ki > 0, N, > 0, fi2 < @. il’, >. (’ (I.‘71 

and then consider the following auxiliary surfaces in the present coordinates e, . 
Thesurface S(el,e2,e3)=0. This surface is a second-degree (Staude [5]) 

cone. For interior points of the cone we have s> 0 , and for exterior points SC 0 . 
The surface R(e,, e2, e,)= 0. This surface is also a seconddegree cone. It is 

the geometric locus of the permanent axes of a gyrostat moving by inertia 161. For 
interior points of this cone J? > 0 , and for exterior points i? < 0 l 

Thesurface rI(e,, e,, e,)=O. This plane is the geometric locus of the perma- 
nent axes of a heavy spherical gyrostat [7] . 

For points lying on the side from which the vector N (11 , fl, , fl3 ) normal to the 
plane emerges II > 0 : on the other side of the plane fl < 0 . 

The cones J? and 3 have four generatrices in common : the coordinate axes oxI 

and the straight line OF with the direction cosines 
(j 3) 

The plane II intersects the cone 3 along the straight line OG, G(T, , Ye2 , ,T'u) , 
the cone R along the straight line 0 K, K( kl , k2 , 7r 3 ) , and both cones simul- 
taneously along the straight line OF. 

The lines of intersection of the surfaces 3, A , n, @ with a unit sphere will be 
denoted by 0, p , lT , Cp , respectively,. The points of intersection of the semiaxes 
0%. OG, OK. OF with the sphere will be denoted by xl , g , k , f, and the dia- 

metrically opposite points by -x 1 , -g , - k , -f . 
The following statements are valid for the surface @ and the spherical curve cp. 
1.. The surface @ passes through the straight lines OX i , OG, and OF, so that the 

curve Cp passes through the points *Xi , &g and izf of the sphere . 
2. The surface @ is tangent to the cone R along the coordinate axes. Since the 

coordinate axes are the lines of intersection of the cones R and $, the surface @ passes 
from one side of the cone 3 to the other side along these axes. Hence, the spherical 
line CjJ is tangent to the line P and intersects the line CY at the points &cl (Fig, 1) . 

3. The surface @ is tangent to the plane il along the straight line OG, so that the 
line Cp is tangent to the line n at the points kg. 

4. The points of the straight line OF are singular points of the surface @ in the sense 
that the normal to the surface @ is not defined, The surface @ can intersect itself 
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along the straight line 0 F. 

5. By virtue of the indicated regions of positiveness and negativeness of the auxiliary 

surfaces, Equation (1.4) implies that on one side of the plane n the surface @ lies 
entirely on the interior of the cone A ) while on the other side of the plane n the sur- 

face @ lies entirely on the exterior of the cone 8. Passage from one side of the plane 

to the other is effected along the straight line OF, 

Fig, 1 

6. If the quantities ki tend to zero while remaining proportional to their initial 
values in such a way that the cone 8’ and the plane n are not altered, then only the arcs 

(% - =z)Y (f, 4, (%I -4, (--_g, --f, -CQ) of the line Cp can approach the line 0, 

or, more precisely, the arcs (zs, --2.J, (g, x1), (--zll +), (-g, -x3) of the line cf 

(Fig. I). The points of these arcs of the line Q are determined by the permissible 
semigeneratrices on the Staude cone in the problem on the permanent rotations of a 
heavy solid [5 and 81. If kt = 0 , the surface 5 becomes a Staude cone, and the cone 

8 and the plane i-l vanish , 
On the other hand, if the Ti tend to zero {or if the ki increase without limit) while 

remaining proportional to their initial values, then the cone S(or J? ) and the plane II 

do-not change, and all the arcs of the line cp approach the lines 0 and TT. When 

ri = 0 , the cone s and the plane n vanish, and the surface % becomes the cone A?. 
The shapes of the lines 0, p , TT and the presumable shape of the line fp are showy 

in Fig. 1 a where the numbers 1, 2,. . . , 6 denote the points of intersection of the line 

cp with the coordinate planes. The permanent semiaxes through the points 1, 2.. . . , 6 

are associated with the angular velocities 

respectively. 

pr2 -- pry 
%,a - ky ’ @3,4 

=- 
ky ’ %,6 = r WI 

The singular points of the line cp are those for which the vectors (1.5) are either col- 
linear or one of them is equal to zero. The permanent rotation for these points cannot 
be determined on the basis of Formula (1,6) . The points ‘tXi , kf, &Q are singular 

points. 
Let us consider the permanent rotations of a gyrostat about a semiaxis corresponding 
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to one of the singular points. 

The vector a = e X le is equal to zero for each point *xi . For example, let 
the semiaxis 0x1 be directed upward along the vertical, i. e. let e = j 1 where j 1 is 
the unit vector of the axis Xl , Then le = AL J1 and Equation (1.2) becomes 

j, X (wk - Pr) = 0 (1.10) 

Since k X P # 0, Equation (1.10) can be valid only if the axis X1 lies in the 
plane n, i. e. if fll= 0 . In this case we obtain 

Pr., Pr3 
~=---L=- 

k, ki 
(1.11) 

for the angular velocity of the permanent rotation about the axis ~1 . 

If the axis X1 does not lie in the plane fl, i, e. if fll # 0 , then Equation (1.10) 

cannot be satisfied and the axis x1 cannot be a permanent rotation axis . Generally, 

if the plane n does not contain any of the principal axes of inertia ( fl, # 0), then 
these axes cannot be permanent rotation axes. If any one of the principal axes of iner- 
tia lies in the plane n , then permanent rotations with the same angular velocity cor- 

respond to both semiaxes of this axis, and the other two principal axes of inertia cannot 
be permanent rotation axes. 

Vectors (1, 5) are collinear for semiaxes through the points ktf. The angular velo- 

city of permanent rotations in this case is given by Equation [3 and 71 

(A - A,) (A, - A J (A 2 - A J xJV&W~ + nS (k,, k,, k,) 0 + 

+ nPR (rl, r2, r3) = 0, (1.12) 

If A ( ?l , 7^2 , r3 ) = 0 , i. e. if the center of mass of the gyrostat lies on the cone 
8, then it is easy to verify that the points *tf coincide with the points *g and that 
the plane n is tangent to the cone s along the straight line E and intersects the 
cone s? along the straight lines OG and OK. For the angular velocity of permanent 

rotation about the semiaxes through the points * g Zkf, (1.12) yields 

w’ = 0, aI” = - 
nS (k,, ks, kd 

(AI - A3) (-43 - A,) (AZ - Al) NlN&Q (1.13) 

Hence, when the center of mass lies on the cone A, the semi?xes through the center 
of mass are associated (in addition m, the equilibrium position U, = 0) with a permanent 

rotation with the angular velocity W # 0 . 

2, The c&aa of dynamic symmCrry, Let 

A, # 4 = A,, ri # 03 ki # 0, k x r#O (2.i) 

The surface (1.4) in this case breaks down into the plane 

el = 0 (2.2) 
and the third-degree surface 

I’ (A, --.-11) (r2e3 - p3Q2e1 f (k,e, - k,e,) lI (e,, e,, e,) = 0 (2.3) 
In order to find the line Cp of intersection of surface (2,3) with the unit sphere which 

defines the cone of permanent axes, let us consider the following auxiliary planes : 
plane (2. Z), the plane II, and the plane 

k,e, - k,e, = 0 (2.4) 

Let iV, #O. We can verify directly that surface (2.3) passes through the straight 
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lines OX1 , OG , of and Oh. The points kJ_ and k h, on the unit sphere have the 
following coordinates : 

+4 

-3 
Fig. 2 

k2 
e 2h=fI/k2” 

The straight lines of and 

Oh are the lines of intersection 

of plane (2.2) with the planes 

n and (2.4), respectively. The 

spherical line cp passes through 

the points &Xl , fg, f f, &h 
of the sphere . 

The plane n is tangent to 

surface (2.3) along the straight line OG , so that the line Cp is tangent at the points 

f g to the line of intersection of the plane n with the sphere (Fig, 2) . Plane (2.4) 

is tangent to surface (2.3) along the axis X1 , so that the line Cp is tangent to the line 

of intersection of plane (‘2.4) with the sphere . 

From Equation (2.3) of the surface we see that on one side of plane (2.2) (the coor - 

dinate plane 0x2 xg ) , surface (2. 3) is situated entirely in one of the dihedral angles 

formed by the planes n and (2.4) , while on the other side of plane (‘2. ‘2) it is situated 

entirely in the other dihedral angle . Passage from one side of plane (2.2) to the other 

and from one dihedral angle into the other is effected along the straight lines of and 

Oh, respectively , 
Thepoints 5x1, ih, *f, kg7 are singular points of the line Cp (Fig. 2) , 
Each nonsingular point of the line ep is associated with a semiaxis which, being 

directed upward aIong the vertical, serves as an axis of permanent rotation with the 

aneular velocitv 
” , 

rzes - r3e.J 
o=Pk 

Nlel + Nzez $- Nsea 
?es - ksee 

=- 
(A2 - Al) (rie3 - r3e2) el 

(2.7) 

The semiaxes passing through the points 5 X1 , f h are not associated with perma- 

nent rotations, The semiaxes through the points * Q correspond to gyrostat equilibrium, 

while the semiaxes through the points f f are associated with permanent rotation with 

the angular velocity 
0 = PrJk, (2.8) 

If fl1 = 0 , the plane fl merges with plane (2. 4) , 

3, Mechrnicrl interpretrtion, Let us suppose that the center of mass does 

not lie on the axis under consideration, i.e. on the vertical . Following Grammel [9], 

we shall refer to the plane which passes through the permanent axis (vertical) and the 
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center of mass of the gyrostat as rhe “vertical central plane” (Fi& 3). This plane and 

the vectors K -. UJ.Te (the moment of momenta of the gyrostat considered as a solid), 

k (the gyrostatic moment), L = PeXr (the gravitational moment). M = w21cxe 

(the gyroscopic moment due to the rotation of the gyrostat considered as a solid), and 

m= -weXk (the gyroscopic moment due to the internal motions of the gyrostat) 
remain stationary with respect to the solid portion of the gyrostat and rotate with the 

angular velocity UJ about the vertical. The vectors L , M and m lie in the horizon- 

tal plane, Let us consider the behavior of these vectors with changing W, The vector 

L remains constant. The vector M retains its direction, while its magnitude varies 
as the square of W . The vector m retains its direction and varies in magnitude in 

proportion to W, When the sign of W is changed (i. e, , when the direction of rotation 

is altered), only the direction of the vector m is reversed. 

r 

G 
During permanent rotation of the gyrostat with a constant 

angular velocity. the gravitational moment L is counterbal- 

K+kp r anced by the gyroscopic moments M and m , i.e. the geo- 
.L IW 

)\ 1. metric sum of vectors L , M , m is zero. 
I ’ \ 1 
' \I 

‘IK\e m _-- m+M 

$7 

Iexe 4, 
This relationship among the vectors L , M 

I K,’ L’\ 4 
and m is the basis of our mechanical inter- 

/ u kxe L 
pretation of the results obtained in Sections 

L 
1 and 2, 

4 Since the gravitational moment is counter- 

Fig. 3 
balanced by the total gyroscopic moment 

M + m , we conclude that the moment of 
momenta K + k of the gyrostat lies in the vertical central plane. 

a) Let us consider the case when the vectors L , M , m are not collinear. This is 
possible if the gyrostatic moment k (and therefore the moment K ) do not lie in the 

vertical central plane, i.e. if c (r x k) # 0 (3.1) 

This means that the permanent axis does not lie in the plane il. From the end points 

D, and Da of the vector L (Fig. 3) we construct straight lines parallel to the vectors 
kXe and IeXe to obtain the triangle fllada . From the behavior of the vector m 
with changing angular velocity W we conclude that there exists a unique value of UJ 
for which okx e = D,D,. If it is also the case that w21eX(! = D,D,, for this same 
value of &J , then the axis under consideration can be a permanent rotation axis, since 
the sum of the vectors L , M and m is zero,, If, on the other hand, o2lexe # D,D, 
the axis cannot be an axis of permanent rotation. We therefore draw the following con- 
clusion. When the center of mass does not lie on the axis (vertical) and the gyrostatic 
moment does not lie in the central plane, the angular velocity of this rotation is unique 
provided the given axis can serve as an axis of permanent rotation. 

During permanent rotation the gravitational moment is counterbalanced by the sum 
M + m of the gyroscopic moments, and this is possible only if the radius vector of the 
center of mass is perpendicular to this sum, i. e. if (M + m) r = o . Bearing in mind 
that o = oc, we find from the latter relation that 

UP [Ze (I- :< r)] + w [e (r X k)] = 0 

The case UJ = 0 is possible only if the center of mass lies on the vertical. In our 
case @J# 0 , so that olc~ (v X r) j-e(rxk)=O (3.2) 
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From Equation (3.2) we see that permanent rotation is possible if 

Ic (c)<r) = .Y(P~, cpr eg) # 0 

i e. if the axis under consideration is not the generanix of the cone s. Equation (3.2) 
then yields c (r x k) 

6) : - lejzq (3.3) 

During permanent rotation the moment obtained as the geometric sum of the gravita- 

tional moment L and the gyroscopic moment m of the internal motions is counterbal- 
anced by the gyroscopic moment M of the gyrostat considered as a solid , 

This is possible only if the vector k is perpendicular to the sum L + m , i. e. if 

(L+ m)k=o. Bearing in mind that 0 = oe, 0 + 0, from the latter expression 
we find that 

(3.4) 
wle (e X k) - PZe (e X r) =0 

and permanent rotation is pos- 

Fig, 4 
from (3.4) we have 

o = P le (e X r) ____- (3.5) le (e X k) 
Expressions (3.3) and (3.5) define the angular velocity of permanent rotation about 

the same axis, and from the uniqueness of W we conclude that 

o = 1, le (e X f) e (r X k) 
Zr (e X k) = - Ie (e x r) (3.6) 

From (3.6) we obtain Equation (1.4) which defines the position of the permanent axis 

relative to the solid portion of the gyrostat (in the system 0~1~2 X3 ) . From the pos- 
sible positions of the permanent axis defined by Equation (1.4) we eliminate those for 

which the permanent axis is the generatrix -of the cones A and s and the positions for 
which the permanent axis passes through the center of mass, 

b) Let us consider the case where the vectors L , M , m. are collinear. This is pos- 

sible only if the gyrostatic moment k (and hence the vector K) lies in the vertical 

central plane, i e. , if e(rXk)=O (3.7) 

This means that the permanent axis lies in the plane fl. 
In order to find the angular velocity of permanent rotation and the position of the 

permanent axis with respect to the solid portion of the gyrostat, let us consider Relations 
(3.2) and (3.4). which are also valid in the case under consideration provided G does 
not Iie on the vertical. Expression (3.2) in Condition (3.7) becomes 

ale (e X r) = 0 

so that an angular velocity of permanent rotation W# 0 exists only if 

le (eXr) = S (e,, c2, es) = 0 (3.6) 

i, e. the axis of permanent rotation must be the generatirix of the cone s, Bearing in 
mind (3. 8). we find in a similar way from (3.4) that 
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Ie (e>< k) = R (e,, e2, e3) = 0 
.i ,e. the axis of permanent rotation must be the generatrix of the cone 8, This brings 

us to the following conclusion. When the center of mass does not lie on the vertical 

and the gyrostatic moment lies in the vertical central plane, permanent rotation is pos- 

sible only if the axis directed along the vertical is the common generatrix of the cones 
s and J?, 

Let us consider the case where the common generatrix of the cones A and 3, which 

is not a principal axis of inertia of the gyrostat, is directed upward along the vertical. 

The vertical divides the central vertical plane into two half-planes. If we look upon 

them from the end point of the vector M , one will be the right-hand and the other the 

left-hand half-plane. Let the semiaxis with respect to which the center of mass lies in 
the right-hand central half-plane be directed upward from the two half-planes of the 

common generatrix of the cones (Fig, 4) . During rotation of the gyrostat in one direc- 

tion about the-axis under consideration (Case a), the vectors m and M are directed 
opposite to the,vector L and there exists a unique (for this direction of rotation) angu- 
lar velocity W for which the geometric sum of these vectors is zero . If we now reverse 

the direction of rotation of the gyrostat about the same axis (Case b) , the vector m 
is reversed. Since the vector L is of constant magnitude independent of u), it follows 

that the magnitude of the vector m is proportional to W and the magnitude of the vec- 

tar M is proportional to the square of w; it follows that there exists a unique (for this 
direction of rotation).angular velocity w for which the collinear vectors L , m , M 
add up to zero. Thus, the semiaxis under consideration can be the axis of two perma- 

nent rotations with angular velocities of different magnitude and sign. 

Let the semiaxis relative to which the center of mass lies in the left-hand central 
half-plane be directed upward from the two semiaxes of the common generauix of the 
cones 8 and 3. During rotation of the gyrostat in one direction about this semiaxis, 
the vectors L 1 M and m are simifarly directed and permanent rotation is impossible 
since there is no angular velocity at which the sum of these vectors is zero. If the gyro- 

stat is made to rotate in the opposite direction about the same semiaxis, the vector m 
is directed in the opposite direction, and depending on the magnitudes of the vectors 

L, leXe, kxe permanent rotation is either impossible or possible. Analysis of these 

possibilities reduces to determining the existence of real solutions of Equation (1.12) . 
Let us consider the case where the generatrix of the cones &’ and s coincides with 

one of the principal axes of inertia and is directed along the vertical. For example, 

let the axis Xl be directed along the vertical. The moment of momenta of the gyro- 
stat considered as a solid is R = 4 1 tu J1 , so that the gyroscopic moment M is zero . 
Permanent motion is then possible if the gravitational moment L is counterbalanced 

by the gyroscopic moment m of the internal motions. If the gyrostatic moment is not 
collinear with the radius vector of the center of mass (kxr =f; 0) and if the gyrostatic 

moment does not lie in the vertical central plane, the axis XI cannot be an axis of 
permanent rotation since the vectors L and m are not collinear and their geometric 
sum always differs from zero. Generally, if.the plane defined by the vectors I and k 
(the plane n) does not pass through some of the axes XL ~ we find that the principal 
axes of inertia cannot be axes of permanent rotation. When the axis ~1 is directed 
upward, if the gyrostatic moment lies in the principal central plane (i. e. if the plane 
n passes through the axes ZQ), the vectors L and m are collinear and there exists a 
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unique angular velocity W# 0 for which the sum of these vectors is zero. If the gyro- 
static moment is collinear with the radius vector of the center of mass (kxr = 0), then 

the vectors L and m are always collinear and each of the principal axes of inertia can 
be an axis of permanent rotation. 

4, Stability of permanent rotrtionr, Projecting Equations (1.1) on the 

axes of the system Ox~xz ~3 , we obtain the differential equations of motion of the 
gyrostat, The particular solution of these equations which corresponds to permanent 

rotations of the gyrostat can be written as 

pi = wei, ri = et (4.1) 

Here the constants e, satisfy Equation (1.4), and the constant W is defined in accord 

ante with (1.6). By (4, l), the equations of motion become 

(Ai+1 - At) m’ei,t.lei + 0 (ki+iei - ktei+l) + P (riei+i - ri+lei) = 0 (4.2) 
which are identically satisfied by the values of e, and W when one of the generatrices 
of the cone of permanent axes is directed alcng the vertical. 

Let us assume that motion (4.1) is unperturbed and investigate its stability relative to 

the variables pi , yi . Denoting the variations of these variables by 51 , r), , respec- 
tively, and taking account of (4.2), we obtain the equations of perturbed motion which 

admit of the following first integrals : 

63) 

As was done by Rumiantsev [8] in examining the stabSty of permanent rotations of a 

solid, we shall make use of integrals (4.3) to consauct a Liapunov function of the form 

V=V1-2kv~+w3+gV3~ (4.4) 
where p is an arbitrary constant, and the constant A, by virtue of (4. Z), is chosen 
(assuming that e, #O) in the form 

(i = 1, 2, 3) 

Function (4.4) is an integral of fixed sign, and by virtue of Liapunov’s stability theo- 

rem the unperturbed motion is stable if the inequalities 
klo - Prl 

wz + el > 0 

fl (e12 klo ; Pn + e22 ktm e, Prl ) + klo ; Prl kzo e, Prz > o (fi.5) 

c1 i eia %+P -pri+1 ki+a~--ri+, 

%l %+2 
+lfi 

i=l i=l kiu;Pri>O 

are fulfilled. 
If the permanent axis lies in one of the principal planes of inertia, then one of the 
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ei t e* & e, , is equal to zero, and, taking i-1 = 0 and 

h = Azw2 + kzw;Pr2 = AS@2 + k*;Pr, 

with the aid of function (4.4) we find that the sufficient conditions for rhe stability of 

permanent motion are of the form 

The problem as to the stability of permanent rotations of a heavy gyrostat about the 

principal axes of inertia (when two of the e i are simultaneously equal 1.0 zero) is con- 

sidered in [4] . 

Let us determine some of the stability domains on the cone of permanent axes using 
sufficient stability conditions (4.5) and (4.6), F.‘e shall consider the stability of perma- 

nent rotations about the cone generatrices passing through points 1 - :) of the line Cp 
(Fig, 1). Let us suppose that the angular velocities W given by (1.6) and corresponding 

to the interior points of the arc 1 - 5 lie between values (1.9) of the angular velocities 
W1 and Ws of the end points of this arc, i. e, that W1 < UJ c Wg . By (1,7) we have 

%a,4 < “I,2 < w5,kl 
and find that the inequalities 

k,o - Pr, = k, fw - ws) < 0, k,w - Pr, = k, (0 -- II+) > 0 

ks w- Prs = k, tw - 0s) > 0 
for the interior points ( @, < 0 , e2 $ 0 , es > 0) of the. arc 1 - 5 . 

Hence we conclude that the sufficient stability conditions (4.5) are fulfilled for P= 0 . 

From inequality (4.6) we conclude that the permanent rotations about the end points 5 
and 1 of the arc 1 - 5 of the line cp are stable. 

Similarly we find that permanent motions about the semiaxes passing through the 
points of the arcs (Q, 51, 0, q, (k-g)l t-g, --f), t-f, --x3) of the fine cpare 

stable. 

For the interior points of the arc (x3, - .X$) of the line cp (Fig. 1) we have el < 0 , 

e,<o, e$ > 0 , and, by (1.6). W < 0. In addition, UJ-‘W as the point ( Q, e,, 
e, ) approaches certain of the end points ~3 or -x2 of the arc under consideration l 

The first and second inequalities of (4+ 6) are fulfilled for each interior point of the arc 

(X3 t -X2) for any value l-i> 0. The third inequaliv of (4.5) can be satisfied by some 

positive value of p. provided that 

(4.7) 

Since within a sufficiently small neighborhood of the point x3 the values of es are 
close to + 1 while the values of e, and e 2 are close to zero, it is clear that inequa- 

lity (4. ‘7) is fulfilled on some portion of the arc ( x3 , --X2) which extends from the 

point X3 . In other words, the permanent rotations corresponding to semiaxes passing 

through points of this portion of Ehe arc (X3 , -X2) are stable, Similarly, we find 
that permanent rotations are also stable about semiaxes passing through points of some 
portion of the arc (x;? , --X3 > extending from the point -23 ; 

If the gyrostat is dynamically symmetrical and if 

A, = A, > -41, N, < 0, N,) 0, N,)O. I"j > 0 

then permanent rotations about semiaxes through interior points of the arcs ( 3 , -f>. 
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( -f* 2) II (2 1 -9) t c-g, -h) , ( b, 3) of the line !“j? (Fig. 2) are stable . 
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